Abstract

AimsThermal burns are the most common type of skin injuries. Clinically, the deteriorating thermal wounds have been successfully treated with skin cell sheets, suspensions or bioengineered skin substitutes. After thermal injury, oxidative microenvironment prevalent in the burnt tissue due to imbalance between production of free radicals and antioxidants defense aiding to destruction of cellular or tissue components. However, depleted antioxidant content particularly vitamin E after heat injury challenges efficient regenerative and healing capacity of transplanted cells. Thus, aim of current study was to pretreat human epidermal keratinocytes with vitamin E in order to enhance their survival rate and therapeutic ability under oxidative microenvironment induced by in vitro heat stress. Main methodsKeratinocytes were treated with 100 μM vitamin E at 37 °C for 24 h followed by thermal stress at 51 °C for 10 min. Cell viability and cytotoxicity assays, gene expression analysis and paracrine release analysis were performed. Key findingsVitamin E preconditioning resulted in significantly improved cell morphology, enhanced viability and reduced lactate dehydrogenase release. Furthermore, Vitamin E preconditioned cells exposed to thermal stress showed significant down-regulated expression of BAX and up-regulated expression of PCNA, BCL-XL, vascular endothelial growth factor (VEGF), involucrin, transglutaminase 1 (TGM1) and filaggrin (FLG) escorted by increased paracrine release of VEGF, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). SignificanceResults of the current study suggest that clinical transplantation of vitamin E preconditioned keratinocytes alone or in combination with dermal fibroblasts in skin substitutes for the treatment of thermally injured skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call