Abstract

Co-expression of c-Myc and TGF-alpha in the mouse liver accelerates hepatocarcinogenesis and enhances DNA damage due to chronic oxidative stress. Dietary supplementation with vitamin E (VE) inhibits hepatocarcinogenesis and reduces chromosomal alterations in the same mice. Here we investigated the sources of reactive oxygen species (ROS) production in c-Myc/TGF-alpha transgenic mice. Inducible nitric oxide synthase (iNOS) and NADPH oxidase levels were determined in c-Myc, TGF-alpha and c-Myc/TGF-alpha mice by RT-PCR, western blot analysis and immunohistochemistry. iNOS and nitrotyrosines levels were higher in the three transgenic lines when compared with wild-type mice. Preneoplastic and neoplastic lesions from c-Myc, TGF-alpha and c-Myc/TGF-alpha transgenic mice displayed upregulation of NADPH oxidase subunits p47-, 67-phox, Rac1, HSP 70, and HO-1. Importantly, dietary supplementation with vitamin E abolished iNOS expression, lowered nitrotyrosines, p47-, p67-phox, and Rac1 levels, and suppressed HSP 70 and HO-1 proteins in c-Myc/TGF-alpha livers. The results suggest that iNOS and NADPH oxidase are involved in ROS generation during c-Myc/TGF-alpha hepatocarcinogenesis and are inhibited by VE treatment. The data provide additional evidence for the potential use of VE in treatment of chronic liver diseases and HCC prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.