Abstract

Reactive oxygen species play an important role in development of lung injury. Neonates exhibit a high risk of developing acute and/or chronic lung disorder, often associated with surfactant deficiency, and in parallel they show low vitamin E concentration. We investigated whether the vitamin E status of adult rats affects the content of phospholipids (PL) in bronchoalveolar lavage and alveolar type II cells. Phosphatidylcholine (PtdCho) is the dominant and functional most important PL in lung surfactant. Therefore, we determined its formation via de novo synthesis and reacylation of lyso-PtdCho in type II cells. Vitamin E depletion caused a decrease of PL content in bronchoalveolar lavage and type II cells and decreased glycerol-3-phosphate O-acyltransferase (G3P-AT) activity, de novo synthesis of PtdCho, and reacylation of lyso-PtdCho in type II cells. Preincubation of type II cell homogenates with dithiothreitol restored the activity of G3P-AT and de novo synthesis but inhibited reacylation. Reacylation was strongly reduced by chelerythrine-mediated inhibition of protein kinase C. We conclude that antioxidant and PKC-modulating properties of vitamin E regulate de novo synthesis of PtdCho and reacylation of lyso-PtdCho in alveolar type II cells. Vitamin E depletion reduced the two pathways of PL synthesis and caused a decrease of PL content in alveolar surfactant of rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.