Abstract

Individuals with Down syndrome (DS) exhibit impaired olfactory function and are at a higher risk of developing Alzheimer's disease (AD). Olfactory dysfunction may be an early clinical symptom of AD. Recent studies have demonstrated that vitamin D3 (VD3) exerts neuroprotective effects in mouse models of AD. In this study, we investigated the effects of VD3 on the morphology, immunolocalization, and markers involved in neuropathogenic processes, apoptosis, proliferation, cell survival, and clearance of amyloid peptides, along with neuronal markers in the olfactory bulb (OB) of an adult female mouse model of DS. Morphological and molecular analyses revealed that trisomic mice exhibited a volume reduction in the external plexiform layer, a decrease in the number of mitral and granule cells, and an increase in the expression of amyloid-β 42, caspase-3 p12, and P-glycoprotein. VD3 reversed certain morphological abnormalities in the OB of control trisomic mice (Ts(CO)) and decreased the levels of caspase-3 p12 and methylenetetrahydrofolate reductase in the treated groups. The results demonstrated that trisomy factor causes morphofunctional abnormalities in the OB of Ts(CO) mice. Moreover, VD3 could represent a therapeutic target to attenuate morphological and molecular alterations in OB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call