Abstract
Vitamin D3 (VD3) as an essential lipid-soluble active ingredient with numerous applications in food and pharmaceutical sectors; however, poor water solubility reduces its bioavailability significantly. Application of protein-polysaccharide complexes as a promising way to protect and trigger programmed release of bioactive molecules has established an optimal window in nutraceutical delivery systems. In this study, complexes of β-lactoglobulin (Blg) and cress seed mucilage (CSM) were used to retain VD3 at undesirable circumstances, such as acidic pH values. The interaction of CSM-Blg was studied by rheological tests and the best formulation was chosen for encapsulation of VD3 via crosslinking with calcium ions (2−10 mM). The results demonstrated that complexation protect VD3 at low pH values with the maximum encapsulation efficiency of 84.2 %. The in vitro study indicated that Blg-CSM-VD3 was more stable in simulated gastric fluid, and in turn VD3 was released in simulated intestinal fluid; the complexes treated with calcium ions had a slower release rate than normal complexes. The release trend of VD3 followed the diffusion-Fickian law and the principal interactions included hydrophobic, electrostatic and hydrogen bonding. The results indicated that Blg-CSM complexes can retain VD3 at acidic environment and induce sustained release, which brings about practical advantages for vitamin delivery in the food and pharmaceutical sectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.