Abstract

A scientific explanation for the beneficial role of vitamin D supplementation in the lowering of glycemia in diabetes remains to be determined. This study examined the biochemical mechanism by which vitamin D supplementation regulates glucose metabolism in diabetes. 3T3L1 adipocytes were treated with high glucose (HG, 25 mm) in the presence or absence of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) (25, 50 nm), the active form of vitamin D. 1,25(OH)(2)D(3) treatment caused significant up-regulation of GLUT4 total protein expression and its translocation to cell surface, and an increase in glucose uptake as well as glucose utilization in HG-treated cells. 1,25(OH)(2)D(3) also caused cystathionine-γ-lyase (CSE) activation and H(2)S formation in HG-treated adipocytes. The effect of 1,25(OH)(2)D(3) on GLUT4 translocation, glucose utilization, and H(2)S formation was prevented by propargylglycine, an inhibitor of CSE that catalyzes H(2)S formation. Studies using antisense CSE also demonstrated the inhibition of GLUT4 translocation as well as glucose uptake and utilization in 1,25(OH)(2)D(3)-supplemented CSE-siRNA-transfected adipocytes compared with controls. 1,25(OH)(2)D(3) treatment along with insulin enhanced GLUT4 translocation and glucose utilization compared with either insulin or 1,25(OH)(2)D(3) alone in HG-treated adipocytes. 1,25(OH)(2)D(3) supplementation also inhibited monocyte chemoattractant protein-1 and stimulated adiponectin secretion in HG-treated adipocytes, and this positive effect was prevented in propargylglycine-treated or CSE-knockdown adipocytes. This is the first report to demonstrate that 1,25(OH)(2)D(3) up-regulates GLUT4 translocation and glucose utilization and decreases inflammatory markers, which is mediated by CSE activation and H(2)S formation in adipocytes. This study provides evidence for a novel molecular mechanism by which 1,25(OH)(2)D(3) can up-regulate the GLUT4 translocation essential for maintenance of glucose metabolism.

Highlights

  • Circulating vitamin D relationship with insulin resistance is not resolved

  • This study examined the biochemical mechanism by which vitamin D supplementation regulates glucose metabolism in diabetes. 3T3L1 adipocytes were treated with high glucose (HG, 25 mM) in the presence or absence of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (25, 50 nM), the active form of vitamin D. 1,25(OH)2D3 treatment caused significant up-regulation of Glucose transporter 4 (GLUT4) total protein expression and its translocation to cell surface, and an increase in glucose uptake as well as glucose utilization in HG-treated cells. 1,25(OH)2D3 caused cystathionine-␥-lyase (CSE) activation and H2S formation in HG-treated adipocytes

  • Studies using antisense CSE demonstrated the inhibition of GLUT4 translocation as well as glucose uptake and utilization in 1,25(OH)2D3-supplemented CSEsiRNA-transfected adipocytes compared with controls. 1,25(OH)2D3 treatment along with insulin enhanced GLUT4 translocation and glucose utilization compared with either insulin or 1,25(OH)2D3 alone in HG-treated adipocytes. 1,25(OH)2D3 supplementation inhibited monocyte chemoattractant protein-1 and stimulated adiponectin secretion in HG-treated adipocytes, and this positive effect was prevented in propargylglycine-treated or CSE-knockdown adipocytes

Read more

Summary

Background

Results: 1,25(OH)2D3 (active form of vitamin D) up-regulates GLUT4 translocation and glucose utilization and is inhibited by chemical inhibition or silencing of cystathionine-␥-lyase in high glucose-treated adipocytes. Studies using antisense CSE demonstrated the inhibition of GLUT4 translocation as well as glucose uptake and utilization in 1,25(OH)2D3-supplemented CSEsiRNA-transfected adipocytes compared with controls. 1,25(OH)2D3 supplementation inhibited monocyte chemoattractant protein-1 and stimulated adiponectin secretion in HG-treated adipocytes, and this positive effect was prevented in propargylglycine-treated or CSE-knockdown adipocytes This is the first report to demonstrate that 1,25(OH)2D3 up-regulates GLUT4 translocation and glucose utilization and decreases inflammatory markers, which is mediated by CSE activation and H2S formation in adipocytes. GLUT4 activation has been a therapeutic target for pharmacological intervention strategies to control diabetic hyperglycemia [8]

The abbreviations used are
EXPERIMENTAL PROCEDURES
RESULTS
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call