Abstract

The Vitamin D receptor (VDR) and its ligand, 1,25(OH) 2D 3, regulate cell proliferation, differentiation and apoptosis in vitro, yet the physiological significance of this regulation is unclear. In these studies, we used VDR knockout (VDRKO) mice to examine the impact of VDR on chemical carcinogen-induced tumorigenesis in vivo. Wild type (WT) and VDRKO littermates were fed a high calcium diet to prevent disturbances in calcium homeostasis and were gavaged with dimethylbenzanthracence (DMBA) using a protocol designed to induce mammary tumors. Compared to WT littermates, VDRKO mice exhibited an increased incidence of mammary gland hyperplasia and a higher percentage of hormone independent tumors with squamous differentiation. VDR ablation also significantly enhanced tumor development in epidermis and lymphoid tissues, but did not affect tumor development in ovary, uterus, lung or liver. These data indicate that VDR ablation alters susceptibility to DMBA-induced carcinogenesis in a tissue specific fashion, and provide support that optimal VDR signaling may act to suppress tumorigenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call