Abstract

BackgroundOut of all measure systemic exposure to fluorides can cause defect of skeletal and dental fluorosis. Endoplasmic reticulum (ER) stress is caused by fluorine-induced oxidative stress and importance of vitamin D in its prevention is not known enough in bone cells. This study was carried out to investigate fluorine-induced oxidative stress, ER stress, and death pathways and the effect of vitamin D on them. MethodsMC3T3-E1 mouse osteoblast cell line was used as the material of the study. The NaF and vitamin D concentrations were determined by the MTT assay. NaF treatments and vitamin D supplementation (pre-add, co-add, and post-add) was administered in the cell line at 24th and 48th hours. The expression of the genes in oxidative stress, ER stress, and death pathways was determined using RT-qPCR and Western blotting techniques. ResultsVitamin D significantly reduced mRNA expression levels of SOD2, CYGB, ATF6, PERK, IRE1, ATG5 and BECN1 whereas caused an increase in levels GPX1, SOD1, NOS2 and Caspase-3 in MC3T3-E1 mouse osteoblast cell line of NaF-induced. In addition, GPX1, SOD1, ATF6, PERK, IRE1, BECN1, Caspase-3 and RIPK1 protein levels were examined by Western blot analysis, and it was determined that vitamin D decreased IRE1 and PERK protein levels, but increased GPX1, SOD1, ATF6 and Caspase-3 protein levels. ConclusionThe findings of the study suggest that vitamin D has protective potential against NaF-induced cytotoxicity reasonably through the attenuation of oxidative stress, ER stress, ATG5, IRE1 and by increasesing caspase-3 in vitro conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call