Abstract
BackgroundIncreasing evidence suggests a potential therapeutic benefit of vitamin D supplementation against Alzheimer’s disease (AD). Although studies have shown improvements in cognitive performance and decreases in markers of the pathology after chronic treatment, the mechanisms by which vitamin D acts on brain cells are multiple and remain to be thoroughly studied. We analyzed the molecular changes observed after 5 months of vitamin D3 supplementation in the brains of transgenic 5xFAD (Tg) mice, a recognized mouse model of AD, and their wild type (Wt) littermates. We first performed a kinematic behavioural examination at 4, 6 and 8 months of age (M4, M6 and M8) followed by a histologic assessment of AD markers. We then performed a comparative transcriptomic analysis of mRNA regulation in the neocortex and hippocampus of 9 months old (M9) female mice.ResultsTranscriptomic analysis of the hippocampus and neocortex of both Wt and Tg mice at M9, following 5 months of vitamin D3 treatment, reveals a large panel of dysregulated pathways related to i) immune and inflammatory response, ii) neurotransmitter activity, iii) endothelial and vascular processes and iv) hormonal alterations. The differentially expressed genes are not all direct targets of the vitamin D-VDR pathway and it appears that vitamin D action engages in the crosstalk with estrogen and insulin signaling. The misexpression of the large number of genes observed in this study translates into improved learning and memory performance and a decrease in amyloid plaques and astrogliosis in Tg animals.ConclusionsThis study underlies the multiplicity of action of this potent neurosteroid in an aging and AD-like brain. The classical and non-classical actions of vitamin D3 can act in an additive and possibly synergistic manner to induce neuroprotective activities in a context-specific way.Electronic supplementary materialThe online version of this article (doi:10.1186/s13024-016-0087-2) contains supplementary material, which is available to authorized users.
Highlights
Increasing evidence suggests a potential therapeutic benefit of vitamin D supplementation against Alzheimer’s disease (AD)
The study allowed a comparison of dysregulated genes and associated molecular pathways affected by vitamin D3 supplementation in both a non-AD and AD context, i.e. Wild-type (Wt) versus Transgenic (Tg) animals
A total of 2211 genes are dysregulated in wild type (Wt) animals in both the hippocampus and cortex combined, compared to a total of 1277 Differentially Expressed Genes (DEGs) in transgenic 5xFAD (Tg) mice after vitamin D3 treatment (Fig. 1a)
Summary
Increasing evidence suggests a potential therapeutic benefit of vitamin D supplementation against Alzheimer’s disease (AD). Studies have shown improvements in cognitive performance and decreases in markers of the pathology after chronic treatment, the mechanisms by which vitamin D acts on brain cells are multiple and remain to be thoroughly studied. We analyzed the molecular changes observed after 5 months of vitamin D3 supplementation in the brains of transgenic 5xFAD (Tg) mice, a recognized mouse model of AD, and their wild type (Wt) littermates. We performed a comparative transcriptomic analysis of mRNA regulation in the neocortex and hippocampus of 9 months old (M9) female mice. Vitamin D3 is mainly produced after adequate exposure to sunlight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.