Abstract

The association between increased risk of hip fracture and low vitamin D status has long been recognized. However, the level of vitamin D required to maintain bone strength is controversial. We used a rodent model of vitamin D depletion to quantify the 25-hydroxyvitamin D (25D) levels required for normal mineralization. Six groups of 10-wk-old male Sprague-Dawley rats (n = 42) were fed a diet containing 0.4% calcium and various levels of dietary vitamin D(3) for 4 mo to achieve stable mean serum 25D levels ranging between 10 and 115 nM. At 7 mo of age, animals were killed, and the histomorphometry of distal and proximal femora and L(2) vertebra was analyzed. Total RNA was extracted from whole femora for real-time RT-PCR analyses. In the distal femoral metaphysis, trabecular bone mineral volume (BV/TV) showed a significant positive association with circulating 25D levels (r(2) = 0.42, p < 0.01) in the animals with serum 25D levels between 20 and 115 nM. Osteoclast surface (Oc.S) levels were positively associated with RANKL:OPG mRNA ratio, higher in groups with lower serum 25D levels, and were independent of serum 1,25D levels. Serum 25D levels <80 nM gave rise to osteopenia as a result of increased osteoclastogenesis, suggesting that levels of 25D >80 nM are needed for optimal bone volume. These data indicate that serum 25D levels are a major determinant of osteoclastogenesis and bone mineral volume and are consistent with the levels of 25D recommended to reduce the risk of fracture in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call