Abstract

Endogenous lipopolysaccharide (LPS) that translocates via the disrupted intestinal barrier plays an essential role in the progression of alcohol-related liver disease (ALD). Vitamin D deficiency is observed in ALD, and it participates in regulating gut barrier function. The current study aimed to examine the association between vitamin D deficiency and endotoxemia in patients with ALD-related cirrhosis. Moreover, the effect of vitamin D deficiency on ethanol (EtOH)- and carbon tetrachloride (CCl4)-induced liver injury relevant to gut barrier disruption in mice was investigated.Patients with ALD-related cirrhosis (Child–Pugh Class A/B/C; n=56/15/7) had lower 25(OH)D levels and higher endotoxin activities than non-drinking healthy controls (n=19). The serum 25(OH)D levels were found to be negatively correlated with endotoxin activity (R=−0.481, P<.0001). The EtOH/CCl4-treated mice developed hepatic inflammation and fibrosis, which were significantly enhanced by vitamin D-deficient diet. Vitamin D deficiency enhanced gut hyperpermeability by inhibiting the intestinal expressions of tight junction proteins including ZO-1, occludin, and claudin-2/5/12/15 in the EtOH/CCl4-treated mice. Consequently, it promoted the accumulation of lipid peroxidases, increased the expression of NADPH oxidases, and induced Kupffer cell infiltration and LPS/toll-like receptor 4 signaling-mediated proinflammatory response. Based on the in vitro assay, vitamin D-mediated vitamin D receptor activation inhibited EtOH-stimulated paracellular permeability and the downregulation of tight junction proteins via the upregulation of caudal-type homeobox 1 in Caco-2 cells.Hence, vitamin D deficiency exacerbates the pathogenesis of ALD via gut barrier disruption and hepatic overload of LPS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call