Abstract

We recently reported that vitamin D deficiency aggravates diabetic bone loss in mice. Although vitamin D affects both muscle and bone, the role of the vitamin D state in diabetic muscle loss and muscle-bone relationships remains unclear. In the present study, we examined the effects of vitamin D deficiency on muscle mass, muscle differentiation and muscle-derived humoral factors linking muscle to bone in diabetic female mice. Diabetes was induced in mice by streptozotocin (STZ) injection after feeding with a normal or vitamin D-deficient diet for 6weeks. Quantitative computed tomography analysis showed that tibial muscle mass was significantly decreased in diabetic mice compared with control mice 4weeks after induction of diabetes. Vitamin D deficiency accelerated muscle loss in diabetic mice. Vitamin D deficiency augmented the decreases in Pax7 mRNA levels and the increases in muscle RING-Finger Protein-1 and atrogin-1 mRNA levels induced by diabetes in the gastrocnemius muscle of mice. Moreover, vitamin D deficiency decreased the mRNA levels of insulin-like growth factor-1, fibroblast growth factor-2 and osteoglycin in muscle of diabetic mice. In conclusion, we demonstrated that vitamin D deficiency aggravates muscle loss induced by diabetes in female mice. Vitamin D may exert significant effects on the maintenance of the musculoskeletal system partly through the muscle-bone relationships in diabetic state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call