Abstract

Oxidative stress (OS) plays an essential role in demyelination and tissue injury related to pathogenesis of multiple sclerosis (MS). On the other hand, vitamin D (VD) as an antioxidant reduces oxidative stress and has been used as adjuvant therapy in autoimmune diseases. Although VD supplementation is suggested as a protective and immunomodulation factor for MS patients, the molecular mechanisms remain unclear. Given that VD may modulate the immune system of MS patients through the DNA repair pathway, we aimed to evaluate the effects of VD supplementation in DNA repair genes expression including OGG1, MYH, MTH1, and ITPA. Transcript levels were measured using the RT-qPCR method in peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RRMS) patients before and after two months of VD supplementation. Furthermore, in silico analysis and correlation gene expression analysis was performed to find the biological binding sites and the effect of NRF2 on the regulation of DNA repair genes. Our data revealed that in MS patients, 2-month VD treatment significantly altered the expression of MYH, OGG1, MTH1, and NRF2 genes. A significant correlation was observed between DNA repair genes and NRF2 expression, which was confirmed by the presence of antioxidant response element (ARE) binding sites in the promoter of OGG1, MYH, and MTH1 genes. This study demonstrated that the impact of VD on MS patients may be mediated through the improvement of DNA repair system efficiency. This finding brought some new evidence for the involvement of DNA repair genes in the physiopathology of MS patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.