Abstract
Intracoronary stenting is a common procedure in patients with coronary artery disease (CAD). Stent deployment stretches and denudes the endothelial layer, promoting a local inflammatory response, resulting in neointimal hyperplasia. Vitamin D deficiency associates with CAD. In this study, we examined the association of vitamin D status with high mobility group box 1 (HMGB1)-mediated pathways (HMGB1, receptor for advanced glycation end products [RAGE], and Toll-like receptor-2 and -4 [TLR2 and TLR4]) in neointimal hyperplasia in atherosclerotic swine following bare metal stenting. Yucatan microswine fed with a high-cholesterol diet were stratified to receive vitamin D-deficient (VD-DEF), vitamin D-sufficient (VD-SUF), and vitamin D-supplemented (VD-SUP) diet. After 6months, PTCA (percutaneous transluminal balloon angioplasty) followed by bare metal stent implantation was performed in the left anterior descending (LAD) artery of each swine. Four months following coronary intervention, angiogram and optical coherence tomography (OCT) were performed and swine euthanized. Histology and immunohistochemistry were performed in excised LAD to evaluate the expression of HMGB1, RAGE, TLR2, and TLR4. OCT analysis revealed the greatest in-stent restenosis area in the LAD of VD-DEF compared to VD-SUF or VD-SUP swine. The protein expression of HMGB1, RAGE, TLR2, and TLR4 was significantly higher in the LAD of VD-DEF compared to VD-SUF or VD-SUP swine. Vitamin D deficiency was associated with both increased in-stent restenosis and increased HMGB1-mediated inflammation noted in coronary arteries following intravascular stenting. Inversely, vitamin D supplementation was associated with both a decrease in this inflammatory profile and in neointimal hyperplasia, warranting further investigation for vitamin D as a potential adjunct therapy following coronary intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.