Abstract

Epidemiologic data have demonstrated that breast cancer incidence is inversely correlated with indices of vitamin D status, including ultraviolet exposure, which enhances epidermal vitamin D synthesis. The vitamin D receptor (VDR) is expressed in mammary epithelial cells, suggesting that vitamin D may directly influence sensitivity of the gland to transformation. Consistent with this concept, in vitro studies have demonstrated that the VDR ligand, 1,25-dihydroxyvitamin D (1, 25D), exerts negative growth regulatory effects on mammary epithelial cells that contribute to maintenance of the differentiated phenotype. Furthermore, deletion of the VDR gene in mice alters the balance between proliferation and apoptosis in the mammary gland, which ultimately enhances its susceptibility to carcinogenesis. In addition, dietary supplementation with vitamin D, or chronic treatment with synthetic VDR agonists, reduces the incidence of carcinogen-induced mammary tumors in rodents. Collectively, these observations have reinforced the need to further define the human requirement for vitamin D and the molecular actions of the VDR in relation to prevention of breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.