Abstract

IntroductionVitamin D deficiency was hypothesized to increase the risk of respiratory infections and asthma exacerbation through a reduced production of cathelicidin, a multifunctional anti-microbial peptide essential for normal immune responses to infections.AimsEvaluation of vitamin D status and its impact upon cathelicidin in children with infection-induced asthma through assessment of their serum levels.Patients and methodsThe study included 65 infection-induced asthmatic children aged 9.32 ± 2.35 years (33 in exacerbation and 32 severity matched in remission) and 25 healthy controls. All children were subjected to history taking, physical examination, pulmonary function tests, CBC, and assessment of serum levels of vitamin D (25(OH)D) and cathelicidin using ELISA.ResultsAll asthmatics and controls were deficient in vitamin D (≤ 20 ng/ml), and no significant difference was found between controls (10.77 ± 5.6 ng/ml), remission group (9.8 ± 4.89 ng/ml), and exacerbation group (8.49 ± 5 ng/ml), p = 0.29. Cathelicidin was higher in the control group (7.69 ± 4.3 ng/ml) compared to that in the remission ones (6.88 ± 3.66 ng/ml), but not significant, while it was significantly higher in the exacerbation group (9.78 ± 3.03 ng/ml) compared to that in the remission ones (p = 0.01). No significant difference between the three groups regarding percentage having vitamin D level < 10 ng/ml (p = 0.3). There was no correlation between serum cathelicidin and vitamin D levels in either asthmatics or controls. Both levels had no correlation with spirometry indices and no relation to frequency of exacerbations.ConclusionVitamin D deficiency cannot explain infection-induced asthma. Cathelicidin elevation in exacerbations seems to be independent of vitamin D.

Highlights

  • Vitamin D deficiency was hypothesized to increase the risk of respiratory infections and asthma exacerbation through a reduced production of cathelicidin, a multifunctional anti-microbial peptide essential for normal immune responses to infections

  • Children with vitamin D deficiency have been shown to be at higher risk of respiratory infections, which is the main stimulant of asthma exacerbation (Paul et al 2012)

  • Laboratory investigations were assessed as follows: 5 ml peripheral venous blood was withdrawn from every patient and control subject under complete aseptic conditions, 1 ml was anticoagulated with EDTA tube for CBC, and the rest was centrifuged, aliquoted, and stored at − 20 °C for assessment of both serum vitamin D and cathelicidin antimicrobial peptide

Read more

Summary

Introduction

Vitamin D deficiency was hypothesized to increase the risk of respiratory infections and asthma exacerbation through a reduced production of cathelicidin, a multifunctional anti-microbial peptide essential for normal immune responses to infections. Hamed et al Bulletin of the National Research Centre (2019) 43:39 host-defensive mechanisms against respiratory tract pathogens (Bener et al 2012). It has a role in Toll-like receptor signaling due to infections by increasing the production of antimicrobial peptides as cathelicidin (Prentice 2008). Children with vitamin D deficiency have been shown to be at higher risk of respiratory infections, which is the main stimulant of asthma exacerbation (Paul et al 2012). The exact role of vitamin D in bronchial asthma is still not clearly determined (Mak and Hanania 2011; Miraglia del Giudice and Allegorico 2016)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.