Abstract

Regulation of cell cycle progression involves redox (oxidation-reduction)-dependent modification of proteins including the mitosis-inducing phosphatase Cdc25C. The role of vitamin C (ascorbic acid, ASC), a known modulator of the cellular redox status, in regulating mitotic entry was investigated in this study. We demonstrated that vitamin C inhibits DNA synthesis in HeLa cells and, mainly the form of dehydroascorbic acid (DHA), delays the entry of p53-deficient synchronized HeLa and T98G cancer cells into mitosis. High concentrations of Vitamin C caused transient S and G2 arrest in both cell lines by delaying the activation of the M-phase promoting factor (MPF), Cdc2/cyclin-B complex. Although vitamin C did not inhibit the accumulation of cyclin-B1, it may have increased the level of Cdc2 inhibitory phosphorylation. This was achieved by transiently maintaining Cdc25C, the activator of Cdc2, both in low levels and in a phosphorylated on Ser216 inactive form that binds to 14-3-3 proteins contributing thus to the nuclear exclusion of Cdc25C. As expected, vitamin C prevented the nuclear accumulation of Cdc25C in both cell lines. In conclusion, it seems that vitamin C induces transient cell cycle arrest, at least in part, by delaying the accumulation and the activation of Cdc25C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.