Abstract

Vitamin C, provitamin A carotenoids, and other carotenoids were measured in freshly squeezed juices from oranges (Citrus sinensis L. var. Valencia late) that were subjected to high-pressure (HP) treatment. Also, the stability of these compounds was studied during refrigerated storage at 4 degrees C. HP treatment is an alternative to heat preservation methods for foods; therefore, it is essential to assess the impact of HP on bioactive compounds. Several processes that combine HP treatment with heat treatment for various time periods were assayed: T0, fresh juice (without treatment); T1, 100 MPa/60 degrees C/5 min; T2, 350 MPa/30 degrees C/2.5 min; T3, 400 MPa/40 degrees C/1 min. Fresh and treated samples were kept refrigerated (4 degrees C) over 10 days. After application of HP and during the refrigeration period, the qualitative and quantitative determination of vitamin C, provitamin A carotenoids (beta- and alpha-carotene; beta- and alpha-cryptoxanthin), and the xanthophylls zeaxanthin and lutein was achieved by high-performance liquid chromatography. T1 and T3 juices showed a decrease in ascorbic acid and total vitamin C just after HP treatment (D0) compared with T0 juices. On the contrary, T2 juices, just after HP treatment (D0), had the same levels of both compounds compared to untreated juices. T1, T2, and T3 treatments led to an increase in the extraction of carotenoids and provitamin A carotenoids. Total carotenoid content after the 10-day refrigerated storage period resulted in no significant quantitative changes in T1 juices, whereas in T2 and T3 juices small losses were found at the end of the storage period (20.56 and 9.16%, respectively). These losses could be influenced by the depleted protection of vitamin C toward carotenoid oxidation during the same period. A similar trend was found in provitamin A carotenoids for the different treated juices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.