Abstract

Hyperglycemia leads to the formation of free radicals and advanced glycation end-products (AGEs). Antioxidants can reduce the level of protein glycation and DNA damage. In this study, we compared the levels of vitamin C intake, which is among the most abundant antioxidants obtained from diet, with the levels of fasting plasma glucose (FPG), glycated hemoglobin (A1C), DNA damage, and cytotoxicity in prediabetic subjects and type 2 diabetic subjects. Our results indicated that there was no significant correlation between FPG or A1C and DNA damage parameters (micronuclei, nucleoplasmic bridges, and nuclear buds). FPG and A1C correlated with necrosis (r = 0.294; P = 0.013 and r = 0.401; P = 0.001, resp.). Vitamin C intake correlated negatively with necrosis and apoptosis (r = −0.246; P = 0.040, and r = −0.276; P = 0.021, resp.). The lack of a correlation between the FPG and A1C and DNA damage could be explained, at least in part, by the elimination of cells with DNA damage by either necrosis or apoptosis (cytotoxicity). Vitamin C appeared to improve cell survival by reducing cytotoxicity. Therefore, the present results indicate the need for clinical studies to evaluate the effect of low-dose vitamin C supplementation in type 2 diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.