Abstract

Ever since Linus Pauling published his studies, the effects of vitamin C have been surrounded by contradictory results. This may be because its effects depend on a number of factors such as the redox state of the body, the dose used, and also on the tissue metabolism. This review deals with vitamin C pharmacokinetics and its participation in neurophysiological processes, as well as its role in the maintenance of redox balance. The distribution and the concentration of vitamin C in the organs depend on the ascorbate requirements of each and on the tissue distribution of sodium-dependent vitamin C transporter 1 and 2 (SVCT1 and SVCT2). This determines the specific distribution pattern of vitamin C in the body. Vitamin C is involved in the physiology of the nervous system, including the support and the structure of the neurons, the processes of differentiation, maturation, and neuronal survival; the synthesis of catecholamine, and the modulation of neurotransmission. This antioxidant interacts with self-recycling mechanisms, including its participation in the endogenous antioxidant system. We conclude that the pharmacokinetic properties of ascorbate are related to the redox state and its functions and effects in tissues.

Highlights

  • Vitamin C is involved in the maintenance of body functions

  • What they propose is that ascorbate released by the vesicles of the gonadotrope cells is recaptured by SVCT2 via an unknown mechanism and facilitates the entry of Ca2+ into the cell, which interacts with calmodulin and induces an increase in the activity of neuronal nitric oxide synthase

  • Fernandez-Valle et al observed that adding ascorbate to cultures of Schwann cells with ganglion neurons favored the production of the basal lamina, essential for the induction of myelination, and seemed to induce protein zero mRNA (PZM), which is a major component of myelin; the mRNA expression of this protein was not exclusive of the ascorbate culture (FernándezValle et al, 1993)

Read more

Summary

INTRODUCTION

Vitamin C is involved in the maintenance of body functions. There is a great deal of studies that show contradictory results about its effects. From the time it was first isolated in 1928, numerous studies have been done on its biochemical and pharmacokinetic properties, its functions and even the role of this molecule in neurophysiology. It is important to identify the role vitamin C has in the maintenance of oxide/reduction (redox) balance, as well as the possible effect it may have on the treatment of chronic degenerative diseases, autoimmune diseases and cancer. Ascorbic acid is a neutrally charged molecule which can be protonated and become ascorbate. Ascorbic acid is a white crystalline solid soluble in water; one of its important roles lies

Vitamin C in Health and Disease
Absorption Mechanisms
Mechanisms of Entry into Enterocytes
Efflux Mechanisms
Tissue Distribution
VITAMIN C AND CNS
Vitamin C and CNS Structure
Antioxidant Role of Vitamin C in CNS
ROLE IN REDOX BALANCE
Recycling Mechanisms
CLINICAL PERSPECTIVE
Findings
CONCLUSIONS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.