Abstract

BackgroundVitamin C has potential protective effects through antioxidant and anti-inflammatory properties. However, the effect of vitamin C supplementation on microvascular function and peripheral tissue perfusion in human sepsis remains unknown. We aimed to determine vitamin C effect on microvascular endothelial dysfunction and peripheral tissue perfusion in septic shock patients.MethodsPatients with septic shock were prospectively included after initial resuscitation. Bedside peripheral tissue perfusion and skin microvascular reactivity in response to acetylcholine iontophoresis in the forearm area were measured before and 1 h after intravenous vitamin C supplementation (40 mg/kg). Norepinephrine dose was not modified during the studied period.ResultsWe included 30 patients with septic shock. SOFA score was 11 [8–14], SAPS II was 66 [54–79], and in-hospital mortality was 33%. Half of these patients had vitamin C deficiency at inclusion. Vitamin C supplementation strongly improved microvascular reactivity (AUC 2263 [430–4246] vs 5362 [1744–10585] UI, p = 0.0004). In addition, vitamin C supplementation improved mottling score (p = 0.06), finger-tip (p = 0.0003) and knee capillary refill time (3.7 [2.6–5.5] vs 2.9 [1.9–4.7] s, p < 0.0001), as well as and central-to-periphery temperature gradient (6.1 [4.9–7.4] vs 4.6 [3.4–7.0] °C, p < 0.0001). The beneficial effects of vitamin C were observed both in patients with or without vitamin C deficiency.ConclusionIn septic shock patients being resuscitated, vitamin C supplementation improved peripheral tissue perfusion and microvascular reactivity whatever plasma levels of vitamin C.ClinicalTrials.gov Identifier: NCT04778605 registered 26 January 2021.

Highlights

  • Sepsis is a common and life-threatening condition that develops in response to bacterial injury

  • We found that vitamin C supplementation significantly improved microvascular reactivity in patients with and without vitamin C deficiency (Fig. 2B), as well as bedside evaluated peripheral tissue perfusion (Table 3)

  • We found that vitamin C supplementation quickly improved microvascular reactivity and peripheral tissue perfusion, a benefit observed in patients with or without vitamin C deficiency

Read more

Summary

Introduction

Sepsis is a common and life-threatening condition that develops in response to bacterial injury. Around 50 millions of incident cases of sepsis are recorded worldwide every year. In the USA, around 535 cases of sepsis occur annually per 100,000 people, accounting for more than USD 23 billion in annual US hospital expenditures [1]. With immune response dysregulation, coagulation activation and oxidative burst affecting cardiac and endothelial cell function, resulting in impaired microvascular blood flow, tissue hypoperfusion and life-threatening organ failure [3]. How‐ ever, the effect of vitamin C supplementation on microvascular function and peripheral tissue perfusion in human sepsis remains unknown. We aimed to determine vitamin C effect on microvascular endothelial dysfunction and peripheral tissue perfusion in septic shock patients

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call