Abstract

Demethylation of CpG motifs in the Foxp3 intronic element, conserved noncoding sequence 2 (CNS2), is indispensable for the stable expression of Foxp3 in regulatory T cells (Tregs). In this study, we found that vitamin C induces CNS2 demethylation in Tregs in a ten-eleven-translocation 2 (Tet2)-dependent manner. The CpG motifs of CNS2 in Tregs generated in vitro by TGF-β (iTregs), which were methylated originally, became demethylated after vitamin C treatment. The conversion of 5-methylcytosin into 5-hydroxymethylcytosin was more efficient, and the methyl group from the CpG motifs of Foxp3 CNS2 was erased rapidly in iTregs treated with vitamin C. The effect of vitamin C disappeared in Tet2(-/-) iTregs. Furthermore, CNS2 in peripheral Tregs in vivo, which were demethylated originally, became methylated after treatment with a sodium-dependent vitamin C transporter inhibitor, sulfinpyrazone. Finally, CNS2 demethylation in thymic Tregs was also impaired in Tet2(-/-) mice, but not in wild type mice, when they were treated with sulfinpyrazone. Collectively, vitamin C was required for the CNS2 demethylation mediated by Tet proteins, which was essential for Foxp3 expression. Our findings indicate that environmental factors, such as nutrients, could bring about changes in immune homeostasis through epigenetic mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.