Abstract

Cultured meat technology is a promising alternative strategy for supplying animal protein taking advantage of its efficiency, safety, and sustainability. The muscle stem cell (MuSC) is one of the most important seed cells for producing muscle fibers, but its weak ex vivo proliferation capacity limits the industrialization of cultured meat. Here we reported that vitamin C (VC) is an excellent supplement for the long-term culture of porcine MuSCs (pMuSCs) ex vivo with considerable proliferative and myogenic effects. After 29 days of culture with 100 μM VC, pMuSCs achieved a 2.8 × 107 ± 0.8 × 107-fold increase in the total cell number, which was 360 times higher than that of cells without VC treatment. pMuSCs that were exposed to VC were less arrested in the G0/G1 phase and showed a significant increase in the expression of cell cycle-related genes such as Cdk1, Cdk2, and Ki67. Additionally, the differentiation potential of pMuSCs was enhanced when cells were proliferated with VC, as evidenced by increased expression of MyoD and MyHC. Furthermore, we demonstrated that VC exerted its proliferative effect through activating the PI3K/AKT/mTOR pathway via the IGF-1 signaling. These findings highlighted the potential application of VC in the ex vivo expansion of pMuSCs for cultured meat production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call