Abstract

Vitamin C deficiency is found in patients with variable kidney diseases. However, the role of vitamin C as an epigenetic regulator in renal homeostasis and pathogenesis remains largely unknown. We showed that vitamin C deficiency leads to acute tubular necrosis (ATN) using a vitamin C-deficient mouse model (Gulo knock-out). DNA/RNA epigenetic modifications and injured S3 proximal tubule cells were identified in the vitamin C-deficient kidneys using whole-genome bisulfite sequencing, methylated RNA immunoprecipitation sequencing, and single-cell RNA sequencing. Integrated evidence suggested that epigenetic modifications affected the proximal tubule cells and fenestrated endothelial cells, leading to tubule injury and hypoxia through transcriptional regulation. Strikingly, loss of DNA hydroxymethylation and DNA hypermethylation in vitamin C-deficient kidneys preceded the histologic sign of tubule necrosis, indicating the causality of vitamin C-induced epigenetic modification in ATN. Consistently, prophylactic supplementation of an oxidation-resistant vitamin C derivative, ascorbyl phosphate magnesium, promoted DNA demethylation and prevented the progression of cisplatin-induced ATN. Vitamin C played a critical role in renal homeostasis and pathogenesis in a mouse model, suggesting vitamin supplementation may be an approach to lower the risk of kidney injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.