Abstract

Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions.

Highlights

  • Humans have an absolute requirement for vitamin C as part of their diet, and deficiency due to inadequate intake is associated with a plethora of symptoms, reflecting the diverse functions attributed to the vitamin [1,2,3,4]

  • The demonstrated dependency of the Fe-containing 2-oxoglutarate-dependent dioxygenase family on ascorbate availability and the involvement of members of this family of enzymes on many immune cell functions provide a rational basis for the belief that ascorbate supports the immune system

  • There is an impressive amount of information emerging that highlights the impact of the TET DNA demethylases and some histone demethylases on epigenetic remodelling of immune cells

Read more

Summary

Vitamin C and immune cell function in inflammation and cancer

Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions

Background
Ascorbate levels in immune cells
Effects of HIFs and ascorbate on immune cells
Ascorbate and the regulation of epigenetics in immune cells
Dendritic cells
NK cells
Summary
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.