Abstract

Previous reports in the areas of animal studies and, recently epidemiology, have linked anti-tumorigenic and anti-inflammatory effects to dietary vitamin B6. This study investigated the molecular mechanism of these effects of vitamin B6. DNA microarray analysis was used to obtain information on changes in colon gene expression from vitamin B6 (pyridoxine) repletion in vitamin B6-deficient rats. Pyridoxine supplementation down-regulated the inflammatory molecule, serine protease inhibitor clade A member 3 (SPI-3) mRNA expression in the colon. This study also showed that tumor necrosis factor α (TNF-α) induced SPI-3 mRNA expression in HT-29 human colon cancer cells, and vitamin B6 (pyridoxal hydrochloride) pretreatment of HT-29 cells inhibited TNF -induced mRNA expression of SPI-3. Vitamin B6 inhibited TNF-α-induced NF-κB activation via suppression of IκBα degradation in HT-29 cells. HT-29 cells stably expressing epitope-tagged ubiquitin were generated and vitamin B6 pretreatment was shown to inhibit ubiquitination of the IkB protein in response to TNF-α-i. Vitamin B6 suppressed SPI-3 expression in the colon of rats and in TNF-α-stimulated HT-29 cells. Further, this study showed a possible role of vitamin B6 in the regulation of protein ubiquitination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call