Abstract

Vitamin B12 (cobalamin, Cbl) is required for cellular metabolism. It is an essential coenzyme in mammals for two reactions: the conversion of homocysteine to methionine by the enzyme methionine synthase and the conversion of methylmalonyl-CoA to succinyl-CoA by the enzyme methylmalonyl-CoA mutase. Symptoms of Cbl deficiency are hematological, neurological and cognitive, including megaloblastic anaemia, tingling and numbness of the extremities, gait abnormalities, visual disturbances, memory loss and dementia. During pregnancy Cbl is essential, presumably because of its role in DNA synthesis and methionine synthesis; however, there are conflicting studies regarding an association between early pregnancy loss and Cbl deficiency. We here review the literature about the requirement for Cbl during pregnancy, and summarized what is known of the expression pattern and function of genes required for Cbl metabolism in embryonic mouse models.

Highlights

  • Over the last two decades, there has been great interest of the role that nutritional factors such as folates and vitamin B12, play during embryonic development

  • In the hope of identifying the etiology of developmental abnormalities and possible maternal contribution to the phenotypes associated with Cbl metabolism, we, and others, have evaluated the expression pattern of the genes associated with Cbl metabolism (Mmaa, Mmab, Mmachc, Mmadhc, Mtr, Mtrr, Lmbrd1, Abcd4 and Mut) by in situ hybridization and immunohistochemistry in wild type mouse placentas and embryos [82,83,84,85,86,87,88]

  • The genes involved in the vitamin B12 metabolism are not ubiquitously expressed during embryogenesis suggesting that the proteins encoded by these genes may not interact throughout organogenesis

Read more

Summary

Introduction

Over the last two decades, there has been great interest of the role that nutritional factors such as folates and vitamin B12, play during embryonic development. Cbl is required for normal embryonic development in animal models, further studies are necessary to fully explain differences between findings in animal models and human patients with Cbl deficiency. In this manuscript we summarize what is known of the expression pattern of genes required for Cbl metabolism in the mouse model, and reviewed the literature in relation to the requirement for Cbl in human and mouse models

Transport and Metabolism of Cobalamin
Expression Pattern of Cbl Genes during Mouse Organogenesis
Cobalamin Absorption
Cobalamin and Folic Acid Pathways
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.