Abstract
ABSTRACTBackgroundVitamin A (VA) has been demonstrated to be a regulator of adipose tissue (AT) development in adult obese models. However, little is known about the effect of VA on obesity-associated developmental and metabolic conditions in early life.ObjectivesWe aimed to assess the effects of dietary VA supplementation during suckling and postweaning periods on the adiposity and metabolic health of neonatal and weanling rats from mothers consuming a high-fat diet (HFD).MethodsPregnant Sprague-Dawley rats were fed a normal-fat diet (NFD; 25% fat; n = 2) or an HFD (50% fat; n = 2), both with 2.6 mg VA/kg. Upon delivery, half of the rat mothers were switched to diets with supplemented VA at 129 mg/kg, whereas the other half remained at 2.6 mg VA/kg. Four groups of rat pups were designated as NFD, NFD + VA, HFD, and HFD + VA, respectively. At postnatal day (P)14, P25, and P35, pups (n = 4 or 3/group) were killed. Body weight (BW), visceral white AT (WAT) mass, brown AT (BAT) mass, uncoupling protein 1 mRNA expression in BAT, serum glucose, lipids, adipokines, and inflammatory biomarkers, as well as serum and AT redox status were assessed.ResultsRat pups in the HFD group exhibited significantly higher BW, WAT mass, and serum glucose and leptin but reduced BAT mass compared with the NFD group. Without affecting the dietary intake, supplementing the HFD with VA significantly reduced the BW and WAT mass of pups but increased the BAT mass, significantly lowered the systemic and WAT oxidative stress, and modulated serum adipokines and lipids to some extent.ConclusionsVA supplementation during suckling and postweaning periods attenuated metabolic perturbations caused by excessive fat intake. Supplementing maternal or infant obesogenic diets with VA or establishing a higher RDA of VA for specific populations should be studied further for managing overweight/obesity in early life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.