Abstract

Vitamin A and its derivatives (retinoids) are essential components in vision; they contribute to pattern formation during development and exert multiple effects on cell differentiation. It has been known for 70 y that the key step in vitamin A biosynthesis is the oxidative cleavage of a carotenoid with provitamin A activity. While a detailed biochemical characterization of the respective enzymes could be achieved in cell-free homogenates, their molecular nature has remained elusive for a long time. Recent research led to the identification of genes encoding two different types of carotene oxygenases from animal species. The molecular cloning of these different types of animal carotene oxygenases establishes the existence of a family of carotenoid metabolizing enzymes in animals heretofore described in plants. With these tools in hands, old questions in vitamin A research can be definitively addressed on the molecular levels contributing to a mechanistic understanding of the regulation of vitamin A homeostasis or tissue specificity of vitamin A formation, with impact on animal physiology and human health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call