Abstract

In 1992 forest vitality fertilization experiments were established on a heavy metal deposition gradient with four treatments in three replications at distances of 0.5, 4 and 8 km from a Cu-Ni smelter in order to estimate their impact on the disturbed forest ecosystem. The increase in Cu concentration in the humus (F/H) layer of the Calluna site type Scots pine (Pinus sylvestris) stands from ca. 300 to 8000 mg kg(-1) d.m. (dry matter) along the 8 km long transect towards the smelter resulted in declining soil microbial biomass and soil respiration activity. Three independent measurements of microbial biomass: C(mic)-FE (fumigation extraction), C(mic)-SIR (substrate induced respiration), and ATP have been used together with an indicator of fungal biomass (ergosterol) and microbial activity (soil respiration). Within this Cu pollution range, all the measured microbial biomass levels declined to 10%-28% of the control plot values and activity assessed by respiration was lowered to 16%. Liming has increased the C(mic)-SIR and respiration rate. Treatments with test fertilizer, made from grounded apatite, did not result in different microbial biomass and respiration rate values compared to the respective controls along the whole gradient. Nitrogen + lime treatments resulted in similar changes to lime alone. No changes, as compared to the respective control, could be detected with nitrogen fertilization at the less polluted end of the gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.