Abstract

Continuous monitoring of human’s breathing and heart rates is useful in maintaining better health and early detection of many health issues. Designing a technique that can enable contactless and ubiquitous vital sign monitoring is a challenging research problem. This article presents mmVital, a system that uses 60GHz millimeter wave (mmWave) signals for vital sign monitoring. We show that the mmWave signals can be directed to human’s body and the Received Signal Strength (RSS) of the reflections can be analyzed for accurate estimation of breathing and heart rates. We show how the directional beams of mmWave can be used to monitor multiple humans in an indoor space concurrently. mmVital also provides sleep monitoring with sleeping posture identification and detection of central apnea and hypopnea events. It relies on a novel human finding procedure where a human can be located within a room by reflection loss-based object/human classification. We evaluate mmVital using a 60GHz testbed in home and office environment and show that it provides the mean estimation error of 0.43 breaths per minute (Bpm; breathing rate) and 2.15 beats per minute (bpm; heart rate). Also, it can locate the human subject with 98.4% accuracy within 100ms of dwell time on reflection. We also demonstrate that mmVital is effective in monitoring multiple people in parallel and even behind a wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call