Abstract

Cu and Co have shown superior catalytic performance to other transitional elements, and layered double hydroxides (LDHs) have presented advantages over other heterogeneous Fenton catalysts. However, there have been few studies about Co–Cu LDHs as catalysts for organic degradation via the Fenton reaction. Here, we prepared a series of Co–Cu LDH catalysts by a co-precipitation method under different synthesis temperatures and set Rhodamine B (RhB) as the target compound. The structure-performance relationship and the influence of reaction parameters were explored. A study of the Fenton-like reaction was conducted over Co–Cu layered hydroxide catalysts, and the variation of synthesis temperature greatly influenced their Fenton-like catalytic performance. The Co–Cut=65°C catalyst with the strongest LDH structure showed the highest RhB removal efficiency (99.3% within 30 min). The change of synthesis temperature induced bulk-phase transformation, structural distortion, and metal–oxygen (M–O) modification. An appropriate temperature improved LDH formation with defect sites and lengthened M–O bonds. Co–Cu LDH catalysts with a higher concentration of defect sites promoted surface hydroxide formation for H2O2 adsorption. These oxygen vacancies (Ovs) promoted electron transfer and H2O2 dissociation. Thus, the Co–Cu LDH catalyst is an attractive alternative organic pollutants treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.