Abstract

Brain training apps are becoming increasingly popular for at home use and as an adjunct to more traditional therapies. There is uncertainty about whether the effects of brain training transfer to real-world cognition, or performance on other cognitive assessment tests, or is specific only to the brain training app. Executive functions (EF’s) are higher-order cognitive processes important for activities of everyday living and autonomous goal-directed behaviour [1]. EF’s are associated with frontal brain networks that are susceptible to injury after head trauma and concussion so it is important to know whether these functions can be trained after a short training period (transfer effects beyond gains on app play), to general cognitive ability but findings so far have been mixed. The present study investigated efficacy of brief computerised brain training to in producing far-transfer effects to performance on standardised clinical tests of cognition in young rugby players with mixed concussion history, over a 4-week period. Athletes cognitive ability was assessed at baseline and after the training period on standardised tests to establish whether there were transfer effects. The putative relationship between concussion frequency and severity on baseline cognitive performance was also investigated. Results showed effective transfer effects from initial training to selective visuospatial executive functions. There was also a decline over the training period in non-verbal strategy initiation, although ability remained at average levels. Players showed no cognitive deficits at baseline, but correlational analyses and MR results indicated that concussion frequency, not severity, was a significant predictor of some visuospatial executive function scores at baseline. These preliminary findings hold promise for full scale studies investigating efficacy of brief brain training and association between sport-related concussion and cognition.

Highlights

  • In the present pilot study, we investigated whether there were any transfer effects from a brain training application (Lumosity® [2]) reported to have robust transfer effects [3], to performance on standardised neuropsychological tests in young amateur rugby players with a mixed concussion history

  • The present study investigated efficacy of brief computerised brain training to in producing far-transfer effects to performance on standardised clinical tests of cognition in young rugby players with mixed concussion history, OBM Neurobiology 2021; 5(2), doi:10.21926/obm.neurobiol

  • Our study showed effective far transfer effects from a brain training app to standardised measures of cognition in young players after a 4-week training period

Read more

Summary

Introduction

In the present pilot study, we investigated whether there were any transfer effects from a brain training application (Lumosity® [2]) reported to have robust transfer effects [3], to performance on standardised neuropsychological tests in young amateur rugby players with a mixed concussion history. Brain training using computerised cognitive tools has been shown to improve executive functions (EF’s) in diverse cohorts [3] other research has shown contrasting findings [4]. Executive functions (EF’s) are higher-order cognitive processes important for autonomous activities of everyday living, planning and goal-directed behaviour [1, 5]. Canonical cognitive and neuropsychological theories of executive functions (EF’s) include a broad range of abilities under the rubric executive including working memory, attention, behavioural inhibition, dual-tasking, planning, sequencing, reasoning and problem-solving [5,6,7,8,9]. Cold EF’s are considered to be predominantly cognitive whereas hot EF’s are associated with body-based functions such as emotion expression, inhibition and regulation [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call