Abstract

The authors present an approach to the coordination of eye movements and locomotion in naturalistic steering tasks. It is based on recent empirical research, in particular, on driver eye movements, that poses challenges for existing accounts of how we visually steer a course. They first analyze how the ideas of feedback and feedforward processes and internal models are treated in control theoretical steering models within vision science and engineering, which share an underlying architecture but have historically developed in very separate ways. The authors then show how these traditions can be naturally (re)integrated with each other and with contemporary neuroscience, to better understand the skill and gaze strategies involved. They then propose a conceptual model that (a) gives a unified account to the coordination of gaze and steering control, (b) incorporates higher-level path planning, and (c) draws on the literature on paired forward and inverse models in predictive control. Although each of these (a-c) has been considered before (also in the context of driving), integrating them into a single framework and the authors' multiple waypoint identification hypothesis within that framework are novel. The proposed hypothesis is relevant to all forms of visually guided locomotion. (PsycINFO Database Record

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.