Abstract
In our daily lives, we interact with different types of deformable materials. Regarding their mechanical behavior, some of those materials lie in a range that is between purely elastic and purely viscous. This range of mechanical behavior is described as viscoelasticity. In certain types of haptic interactions, such as assessment of ripeness of fruit, firmness of cheese, and consistency of organ tissue, we rely heavily on our haptic perception of viscoelastic materials. The relationship between the mechanical behavior of viscoelastic materials and our perception of them has been investigated in the field of psychorheology. However, our knowledge on how we perceive viscoelastic materials is still quite limited though some research work has already been done on purely elastic and purely viscous materials. History- and frequency-dependent behavior of viscoelastic materials result in a complex time-dependent response, which requires relatively more sophisticated models to investigate their behavior than those of purely elastic and viscous materials. In this study, we model viscoelasticity using a "springpot" (i.e., fractional-order derivative element) and express its behavior in the frequency domain using two physical parameters-"magnitude" and "phase" of complex stiffness. In the frequency domain, we are able to devise signal detection experiments where we can investigate the perception of viscoelastic materials using the perceptual terms of "firmness" and "bounciness," corresponding to the physical parameters of "magnitude" and "phase." The results of our experiments show that the just-noticeable difference (JND) for bounciness increases linearly with increasing "phase," following Weber's law, while the JND for firmness is surprisingly independent of the level of "phase."
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.