Abstract
Gesture recognition has attracted considerable attention and made encouraging progress in recent years due to its great potential in applications. However, the spatial and temporal modeling in gesture recognition is still a problem to be solved. Specifically, existing works lack efficient temporal modeling and effective spatial attention capacity. To efficiently model temporal information, we first propose a long- and short-term temporal shift module (LS-TSM) that models the long-term and short-term temporal information simultaneously. Then, we propose a spatial attention module (SAM) that focuses on where the change primarily occurs to obtain effective spatial attention capacity. In addition, the semantic relationship among gestures is helpful in gesture recognition. However, this is usually neglected by previous works. Therefore, we propose a label relation module (LRM) that takes full advantage of the relationship among classes based on their labels’ semantic information. To explore the best form of LRM, we design four different semantic reconstruction methods to incorporate the semantic relationship information into the class label’s semantic space. We perform extensive ablation studies to analyze the best settings of each module. The best form of LRM is utilized to build our visual-semantic network (VS Network), which achieves the state-of-the-art performance on two gesture datasets, i.e., EgoGesture and NVGesture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.