Abstract

Danionella cerebrum (DC) is a promising vertebrate animal model for systems neuroscience due to its small adult brain volume and inherent optical transparency, but the scope of their cognitive abilities remains an area of active research. In this work, we established a behavioral paradigm to study visual spatial navigation in DC and investigate their navigational capabilities and strategies. We initially observed that adult DC exhibit strong negative phototaxis in groups but less so as individuals. Using their dark preference as a motivator, we designed a spatial navigation task inspired by the Morris water maze. Through a series of environmental cue manipulations, we found that DC utilize visual cues to anticipate a reward location and found evidence for landmark-based navigational strategies wherein DC could use both proximal and distal visual cues. When subsets of proximal visual cues were occluded, DC were capable of using distant contextual visual information to solve the task, providing evidence for allocentric spatial navigation. Without proximal visual cues, DC tended to seek out a direct line of sight with at least one distal visual cue while maintaining a positional bias toward the reward location. In total, our behavioral results suggest that DC can be used to study the neural mechanisms underlying spatial navigation with cellular resolution imaging across an adult vertebrate brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call