Abstract

Here, we present a general framework for combining visual odometry and lidar odometry in a fundamental and first principle method. The method shows improvements in performance over the state of the art, particularly in robustness to aggressive motion and temporary lack of visual features. The proposed on-line method starts with visual odometry to estimate the ego-motion and to register point clouds from a scanning lidar at a high frequency but low fidelity. Then, scan matching based lidar odometry refines the motion estimation and point cloud registration simultaneously.We show results with datasets collected in our own experiments as well as using the KITTI odometry benchmark. Our proposed method is ranked #1 on the benchmark in terms of average translation and rotation errors, with a 0.75% of relative position drift. In addition to comparison of the motion estimation accuracy, we evaluate robustness of the method when the sensor suite moves at a high speed and is subject to significant ambient lighting changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.