Abstract

AbstractThe high‐contrast optical imaging of nearly transparent 2D materials such as clays and some oxide sheets has been an outstanding challenge; yet there is a critical research capability needed in the synthesis and processing of these materials, which show promise in a number of applications including barrier coatings, membranes, and composites. Using delaminated silicate clay and titania sheets as model systems, here it is shown that these weakly quenching, nearly transparent 2D sheets can be readily imaged by fluorescence quenching microscopy (FQM) based on a new mechanism. When these sheets are deposited on strongly quenching substrates, including doped silicon wafers and metals or indium tin oxide‐coated glass slides, they can act as a “spacer” to reduce the degree of quenching of the dye layer by the substrate, appearing as highly visible bright sheets against a dark background. This new FQM strategy can visualize dielectric 2D materials with high contrast and layer resolutions comparable to scanning electron microscopy and atomic force microscopy. When different 2D materials are co‐deposited, FQM not only differentiates them readily based on their quenching capabilities, but also can resolve their vertical stacking sequence based on the contrast of their overlapped areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.