Abstract

Currently, there is neither a standardized mode for the documentation of phantom sensations and phantom limb pain, nor for their visualization as perceived by patients. We have therefore created a tool that allows for both, as well as for the quantification of the patient's visible and invisible body image. A first version provides the principal functions: (1) Adapting a 3D avatar for self-identification of the patient; (2) modeling the shape of the phantom limb; (3) adjusting the position of the phantom limb; (4) drawing pain and cramps directly onto the avatar; and (5) quantifying their respective intensities. Our tool (C.A.L.A.) was evaluated with 33 occupational therapists, physiotherapists, and other medical staff. Participants were presented with two cases in which the appearance and the position of the phantom had to be modeled and pain and cramps had to be drawn. The usability of the software was evaluated using the System Usability Scale and its functional range was evaluated using a self-developed questionnaire and semi-structured interview. In addition, our tool was evaluated on 22 patients with limb amputations. For each patient, body image as well as phantom sensation and pain were modeled to evaluate the software's functional scope. The accuracy of the created body image was evaluated using a self-developed questionnaire and semi-structured interview. Additionally, pain sensation was assessed using the SF-McGill Pain Questionnaire. The System Usability Scale reached a level of 81%, indicating high usability. Observing the participants, though, identified several operational difficulties. While the provided functions were considered useful by most participants, the semi-structured interviews revealed the need for an improved pain documentation component. In conclusion, our tool allows for an accurate visualization of phantom limbs and phantom limb sensations. It can be used as both a descriptive and quantitative documentation tool for analyzing and monitoring phantom limbs. Thus, it can help to bridge the gap between the therapist's conception and the patient's perception. Based on the collected requirements, an improved version with extended functionality will be developed.

Highlights

  • After the amputation of a limb, up to 90% of the patients report a feeling of the missing body part still being present [1]

  • The evaluation with the System Usability Scale resulted in an average score of 81.7% (±11.2), placing in the 4th quartile which represents high usability

  • We evaluated the usability of C.A.L.A. by user observation and semi-structured interviews, in which we asked about the difficulties in using C.A.L.A

Read more

Summary

Introduction

After the amputation of a limb, up to 90% of the patients report a feeling of the missing body part still being present [1]. The current dominant theory is the cortical remapping theory, according to which the brain responds to the loss of a limb with the reorganization of somatosensory maps: cortical areas that have received sensory signals from the amputated limb begin to receive input from neighboring areas [2, 4]. Another explanation is based on the concept of a “neuromatrix”—an internal representation of one’s own body. The absence of visual and sensitive feedback of the missing limb enhances this effect [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call