Abstract

This manuscript reports the use of near-infrared multispectral imaging (NIR-MSI) microscopy to provide the first direct observation and spectral measurement of individual poly(n-isopropylacrylamide-co-acrylic acid) (NIPAM-co-AAc) hydrogel particles. The high sensitivity and high spatial resolution (approximately 0.9 microm/pixel) of the NIR-MSI microscope, coupled with its ability to measure images and spectra directly and simultaneously, allows the unprecedented in situ monitoring of the size, morphology, and spectroscopic properties of individual hydrogel particles, which respond strongly to external stimuli (e.g., changes in temperature and/or pH). Importantly, this novel technique allows, for the first time, the direct measurement of the lower critical solution temperature (LCST) phase transition of individual hydrogel particles rather than that of a collection of hydrogel particles. Furthermore, NIR-MSI measurements reveal that the LCST value is unique for each individual hydrogel particle, depending strongly on particle size, with larger particles exhibiting higher LCST values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.