Abstract

We have investigated by means of scanning tunneling microscopy (STM) and spectroscopy (STS) the electronic structure of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) molecular monolayers grown on Au(111). Thanks to our STM/STS measurements, performed under ultra-high vacuum conditions and low temperature, an interface state directly derived from the Shockley-type surface state of pristine Au(111) has been detected. Low bias voltage STM images show the formation of standing wave patterns both on Au(111) and on Au(111) covered by a PTCDA monolayer. These patterns result from the scattering of quasi-free 2D electron surface states with surface defects. By Fourier transforming STM images, the corresponding wavevectors have been extracted. In particular, the simultaneous imaging of both pristine and PTCDA covered Au(111) areas has allowed to measure the Fermi contours and the Fermi wavevectors of both systems. These measurements show that one monolayer PTCDA on Au(111) presents an interface state with an isotropic circular Fermi contour and smaller Fermi wavector () than the corresponding Fermi wavector of pristine Au(111) (). This picture is consistent with an upward shift of the Shockley-type surface state due to the presence of the molecular monolayer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call