Abstract
Many highly ordered structures with smart functions are generated by self-assembly with stimuli responsiveness. Despite that electron microscopes enable us to directly observe the end products, it is hard to visualize the initial step and the kinetic stimuli-responsive behavior of self-assembly. Here, we report the design and synthesis of stereogenic amphiphiles, namely, ( Z)-TPE-OEG and ( E)-TPE-OEG, with aggregation-induced emission (AIE) characteristics from the hydrophobic tetraphenylethene core and thermoresponsive behavior from the hydrophilic oligoethylene glycol monomethyl ether chain. The two isomers can be easily isolated by high-performance liquid chromatography and characterized by 2D NMR spectroscopy. While ( Z)-TPE-OEG self-assembles into vesicles, its ( E)-cousin forms micelles in water. The initial step of their self-assembly processes can be visualized based on AIE characteristics, with a sensitivity much higher than the method based on transmittance measurement. The entrapment and release capabilities of the ( Z)-stereogenic amphiphile are demonstrated by employing pyrene as a guest. The thermoresponsive behavior of the ( Z)-amphiphile results in its continuous phase transition from microscopic self-assembly to macroscopic aggregation, which is successfully visualized in situ by confocal laser scanning microscopy accompanied by the AIE technique. Such a kinetic process shows different stages according to the microscopic visualization, and these stages have never been monitored through roughly observing the appearance of precipitates. It is anticipated that this study can deepen the understanding of the self-assembly processes for better monitoring and controlling them in different systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.