Abstract

Fundamental understanding of atomic-scale processes that determine the surface morphology of hydrogenated amorphous silicon (a-Si:H) thin films during plasma deposition is essential to develop systematic strategies for depositing smooth device-quality a-Si:H films. We have developed visualization tools for monitoring the evolution of surface morphology, atomic coordination, and bond strain distribution during radical precursor migration on a-Si:H surfaces; these tools are used here to study the mechanisms of SiH/sub 3/ diffusion on the a-Si:H surface and elucidate valley-filling phenomena leading to smooth a-Si:H films. We present surface characterization results during a radical migration trajectory representative of the early stage of plasma deposition: the SiH/sub 3/ precursor is impinged on a hill and migrates until it is incorporated into a nearby valley on the a-Si:H surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.