Abstract
Black phosphorus (BP) has drawn growing attention as the anode material for lithium-ion batteries (LIBs) because of its high theoretical lithium storage capacity. However, its electrochemical processes and fundamental failure mechanisms have not been completely understood due to the lack of direct evidence. Here, we report the direct visualization of the electrochemical lithiation/delithiation behavior of the BP anode in nano-LIBs using the in situ transmission electron microscopy technique. Upon lithiation, the BP anode is found to undergo obvious anisotropic size expansion and phase change from orthorhombic BP to amorphous LixPy compounds. Unexpectedly, the BP anode pulverizes suddenly during discharging, resulting in irreversibility of the lithiated product and thus poor electrochemical cycling performance. This finding discloses that the failure mechanism of the BP anode is mainly correlated with the delithiation process rather than the lithiation one, which subverts the commonly accepted understandin...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.