Abstract
In this study we develop a simplified technique for helping researchers and analysts visualize the alternative prominence of term eigenvectors obtained after exploring term associations (Term Clusters) while conducting Text Data Mining on a collection to Corporate Social Responsibility (CSR) reports. The collection analyzed is comprised of CSR reports produced by 7 US firms (Citi, Coca-Cola, Exxon-Mobil, General Motors, Intel, McDonald’s and Microsoft) in 2004, 2008 and 2012. The analysis is performed by year in order to discern how the prominence of term eigenvectors has evolved for each firm and for different CSR topics. Results indicate that term eigenvectors maintain their prominence when CSR topics are related to the core business of the firm in question.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal on Advances in Theoretical and Applied Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.