Abstract

Gaussian Process Dynamical Models (GPDMs) constitute a nonlinear dimensionality reduction technique that provides a probabilistic representation of time series data in terms of Gaussian process priors. In this paper, we report a method based on GPDMs to visualize the states of time-series data. Conventional GPDMs are unsupervised, and therefore, even when the labels of data are available, it is not possible to use this information. To overcome the problem, we propose a supervised GPDM (S-GPDM) that utilizes both the data and their corresponding labels. We demonstrate experimentally that the S-GPDM can locate related motion data closer together than conventional GPDMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.