Abstract

The purpose of this research is to gain a greater insight into the hydrate formation processes of different carbamazepine (CBZ) anhydrate forms in aqueous suspension, where principal component analysis (PCA) was applied for data analysis. The capability of PCA to visualize and to reveal simplified structures that often underlie large data sets are explored. Different CBZ polymorphs were dispersed separately in aqueous solution, and then recovered and measured by FT-Raman spectroscopy. PCA was employed for visualizing the dynamics of the phase transformation from each CBZ polymorph to the dihydrate (DH). As a comparison to PCA visualization, the transformation process of each CBZ polymorph was quantified using PLS modeling. The results demonstrated that PCA has advantages in presenting the original data in terms of the differences and similarities, and also directly identify the statistical patterns in the data even when the data set is large. These advantages provided greater insight into the measured Raman spectra as well as the phase transformation process of CBZ polymorphs to the DH in aqueous environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.