Abstract

In coherent anti-Stokes Raman scattering (CARS), the emitted signal carries both amplitude and phase information of the molecules in the focal volume. Most CARS experiments ignore the phase component, but its detection allows for two advantages over intensity-only CARS. First, the pure resonant response can be determined, and the nonresonant background rejected, by extracting the imaginary component of the complex response, enhancing the sensitivity of CARS measurements. Second, selectivity is increased via determination of the phase and amplitude, allowing separation of individual molecular components of a sample even when their vibrational bands overlap. Here, using vibrational phase contrast CARS (VPC-CARS), we demonstrate enhanced sensitivity in quantitative measurements of ethanol/methanol mixtures and increased selectivity in a heterogeneous mixture of plastics and water. This powerful technique opens a wide range of possibilities for studies of complicated systems where overlapping resonances limit standard methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.