Abstract

Quaternion rotation is a powerful tool for rotating vectors in 3-D; as a result, it has been used in various engineering fields, such as navigations, robotics, and computer graphics. However, understanding it geometrically remains challenging, because it requires visualizing 4-D spaces, which makes exploiting its physical meaning intractable. In this paper, we provide a new geometric interpretation of quaternion multiplication using a movable 3-D space model, which is useful for describing quaternion algebra in a visual way. By interpreting the axis for the scalar part of quaternion as a 1-D translation axis of 3-D vector space, we visualize quaternion multiplication and describe it as a combined effect of translation, scaling, and rotation of a 3-D vector space. We then present how quaternion rotation formulas and the derivative of quaternions can be formulated and described under the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.